Solving the problem of inadequate scoring rules for assessing probabilistic football forecast models
نویسندگان
چکیده
Despite the massive popularity of probabilistic (association) football forecasting models, and the relative simplicity of the outcome of such forecasts (they require only three probability values corresponding to home win, draw, and away win) there is no agreed scoring rule to determine their forecast accuracy. Moreover, the various scoring rules used for validation in previous studies are inadequate since they fail to recognise that football outcomes represent a ranked (ordinal) scale. This raises severe concerns about the validity of conclusions from previous studies. There is a wellestablished generic scoring rule, the Rank Probability Score (RPS), which has been missed by previous researchers, but which properly assesses football forecasting models.
منابع مشابه
Approximation Methods for Solving the Equitable Location Problem with Probabilistic Customer Behavior
Location-allocation of facilities in service systems is an essential factor of their performance. One of the considerable situations which less addressed in the relevant literature is to balance service among customers in addition to minimize location-allocation costs. This is an important issue, especially in the public sector. Reviewing the recent researches in this field shows that most of t...
متن کاملRule-based joint fuzzy and probabilistic networks
One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...
متن کاملStrictly Proper Scoring Rules, Prediction, and Estimation
Scoring rules assess the quality of probabilistic forecasts, by assigning a numerical score based on the forecast and on the event or value that materializes. A scoring rule is strictly proper if the forecaster maximizes the expected score for an observation drawn from the distribution F if she issues the probabilistic forecast F , rather than any G 6= F . In prediction problems, strictly prope...
متن کاملMultidimensional local scoring rules
A scoring rule is a principled way of assessing a probabilistic forecast. The key requirement of a scoring rule is that it rewards honest statements of ones beliefs. A scoring rule is said to be local if it assigns a score based on the observed outcome and on outcomes that are in some sense “close” to the observed outcome. In practice, almost all scoring rules can be derived from a concave entr...
متن کاملPartial Likelihood-Based Scoring Rules for Evaluating Density Forecasts in Tails
We propose new scoring rules based on partial likelihood for assessing the predictive accuracy of competing density forecasts over a specific region of interest, such as the left tail in financial risk management. These scoring rules are proper and can be interpreted in terms of Kullback-Leibler divergence between weighted versions of the density forecast and the true density. Existing scoring ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011